# Hello, I need help writing proofs for a logic and moral reasoning philosophy class. The proofs are for: 1. Premises: q -> (q &~ q) Conclusion: ~q 2. Premises: k & l

### We are confident that we have the best essaywriters in the market. We have a team of experienced writers who are familiar with all types of essays, and we are always willing to help you with any questions or problems you might face. Plus, our writers are always available online so you can always get the help you need no matter where you are in the world.

Order a Similar Paper Order a Different Paper

Hello,

I need help writing proofs for a logic and moral reasoning philosophy class.

The proofs are for:

### Save your time - order a paper!

Get your paper written from scratch within the tight deadline. Our service is a reliable solution to all your troubles. Place an order on any task and we will take care of it. You won’t have to worry about the quality and deadlines

Order Paper Now1. Premises: q -> (q &~ q)

Conclusion: ~q

2. Premises: k & l

Conclusion: (k – > l) & (l -> k)

3. Premises: p & (q V r), p -> ~r

Conclusion: q V e

4. Premises: ~(p -> q)

Conclusion: ~q

5. Premises: (a V b) & (c V d), a -> (e -> (c &d)), c <-> ~d

Conclusion: e -> b

Hello, I need help writing proofs for a logic and moral reasoning philosophy class. The proofs are for: 1. Premises: q -> (q &~ q) Conclusion: ~q 2. Premises: k & l

PHI 1600 Spring 2021 (1) Premises: q -> (q &~ q) Conclusion: ~q (2) Premises: k & l Conclusion: (k – > l) & (l -> k) (3) Premises: p & (q V r), p -> ~r Conclusion: q V e (4) Premises: ~(p -> q) Conclusion: ~q (5) Premises: (a V b) & (c V d), a -> (e -> (c &d)), c <-> ~d Conclusion: e -> b

Hello, I need help writing proofs for a logic and moral reasoning philosophy class. The proofs are for: 1. Premises: q -> (q &~ q) Conclusion: ~q 2. Premises: k & l

HW 7 Create proofs for each problem that start with the premises given and end with the given conclusion. (1) Premises: p & q Conclusion: p V q p & q Simp, 1 p V q Add 2 (2) Premises: Conclusion: (p V q) V r p p V q Add, 1 (p V q) V r Add, 2 (3) Premises: p -> q Conclusion: q V r p -> q MP, 1-2 q V r Add, 3 (4) Premises: p & (q & r) r -> s Conclusion: p & (q & r) r -> s q & r Simp, 1 Simp, 2 MP, 2, 4 (5) Premises: q (p & q) -> r Conclusion: p (p &q) -> r p & q Conj 1, 2 MP 3, 4

Hello, I need help writing proofs for a logic and moral reasoning philosophy class. The proofs are for: 1. Premises: q -> (q &~ q) Conclusion: ~q 2. Premises: k & l

HW 9 Write proofs for the following problems. (1) Premises: g -> (~o -> (g -> d)) o V g ~o Conclusion: g -> (~o -> (g -> d)) o V g ~o DS 2, 3 ~o -> (g -> d) MP 1, 4 6. g -> d MP 5, 3 7. d MP 6, 4 (2) Premises: (u & (~(~p))) -> q ~o -> u ~p -> o ~o & t Conclusion: q 1. (u & (~(~p))) -> q A 2. ~o -> u A 3. ~p -> o A 4. ~o & t A 5. ~o Simp 4 6. u MP 2, 5 7. ~~p MT 3, 5 8. u & ~~p Conj 6, 7 9. q MP 1, 8 (3) Premises: m -> (u -> h) (h V ~u) -> f Conclusion: m -> f 1. m -> (h V ~u) 2. (h V ~u) -> f –3. m CA –4. u -> h MP 1, 3 –5. ~u V h MI 4 –6. h V ~u Commut 5 –7. f MP 2, 6 8. m -> f CP 3-7 (4) Premises: (i -> e) -> c c -> ~c Conclusion: 1. (i -> e) -> c A 2. c -> ~c 3. ~c V ~c MI 2 4. ~c Taut 3 5. ~(i -> e) MT 1, 4 6. ~(~i V e) MI 5 7. ~~i & ~e DM 8. ~~i Simp 7 9. i DN 8 (5) Premises: i -> ~(g V f) ~t V i Conclusion: ~f 1. i -> ~(g V f) 2. ~t V i 3. t 4. ~~t DN 3 5. i DS 2, 4 6. ~(g V f) MP 1, 5 7. ~g & ~f DM 6 8. ~f Simp 7

Hello, I need help writing proofs for a logic and moral reasoning philosophy class. The proofs are for: 1. Premises: q -> (q &~ q) Conclusion: ~q 2. Premises: k & l

HW 10 Write proofs for the following problems. (1) Premises: a -> b a -> c b -> ~c Conclusion: ~a 1. a -> b A 2. a -> c 3. b -> ~c -4. a SA -5. c MP 2, 4 -6. b MP 1, 4 -7. ~c MP 3, 6 -8. c & ~c Conj 5, 7 9. ~a IP 4-8 (2) Premises: ~(p V q) (~r) -> (~s) r -> (q V ~s) ~(p V q) (~r) -> (~s) r -> (q V ~s) -4. s SA -5. ~~s DN 4 -6. ~~r MT 2, 5 -7. r DN 6 -8. q V ~s MP 3, 7 -9. q DS 8, 5 -10. p V q Add 9 -11. (p V q) & ~(p V q) Conj 10, 1 12. ~s IP 4 (3) Premises: (~q) <-> (~p) (r <-> s) V ((r & s) V (~r & ~s)) (~r) V p s V ~q Conclusion: (~q) <-> (~p) (r <-> s) V ((r & s) V (~r & ~s)) (~r) V p s V q ((r & s) V (~r & ~ s)) V ((r & s) V (~r & ~s)) ME 5 (r & s) V (~r & ~s) Taut 6 -8. ~r & ~s SA -9. ~s Simp 8 -10. s & ~s Conj 5, 9 11. ~(~r & ~s) IP 8-10 12. r & s DS 7, 11 13. r Simp 12 14. ~~r DN 13 15. p Ds 3, 14 (4) Premises: p -> q q -> r Conclusion: p -> (q & r) p -> q q -> r -3. P SA -4. q MP 1, 3 -5.r MP 2, 4 -6. q & r Conj 4, 5 7. p -> (q & r) CP 3-6 (5) Premises: y -> (z V w) ~w (~z) V x Conclusion: (~x) -> (~y) y -> (z V w) ~w (~z) V x -4. y SA -5. z V w MP 1, 4 -6. z DS 5, 2 -7. ~~z DN 6 -8. x DS 3, 7 9. y -> x CP 4-8 10. ~x -> ~y Trans 9 (6) Premises: ~(a & b) b V c Conclusion: a -> c ~(a & b) b V c -3. a SA -4. ~a V ~b DM 1 -5. ~~a DM 3 -6. ~b DS 4, 5 -7. c DS 2, 6 8. a ->c CP 3-7 (7) Premises: x -> y ((~y) V z) & ((~y) V w) Conclusion: x -> z x -> y ((~y) V z) & ((~y) V w) -3. x SA -4. y MP 1, 3 -5. ~y V z Simp 2 -6. ~~y DN 4 -7. z DS 5, 6 x -> z CP 3-7

Hello, I need help writing proofs for a logic and moral reasoning philosophy class. The proofs are for: 1. Premises: q -> (q &~ q) Conclusion: ~q 2. Premises: k & l

HW 11 Write proofs for the following problems. (2) Premises: x -> (y & z) y -> (w & ~w) ~x -> w Conclusion: x -> (y & z) y -> (w & ~w) ~x -> w -4. ~w SA -5. ~~x MT 3, 4 -6. x DN 5 -7. y & z MP 1, 6 -8. y Simp 7 -9. w & ~w MP 2, 8 10. ~~w IP 4-9 11. w DN 10 (4) Premises: (~a) -> ((b & c) V (b & d)) ~(e V b) Conclusion: (~a) -> ((b & c) V (b & d)) ~(e V b) -3. ~a SA -4. (b & c) V (b & d) MP 1, 3 -5. ~e & ~b DM 2 -6. ~b Simp 5 –7. b & c SA –8. b Simp 7 –9. b & ~b Conj 8, 6 -10. ~(b & c) IP 7-9 –11. b & d SA –12. b Simp 11 –13. b & ~b Conj 12, 6 -14. ~(b & d) IP 11-13 -15. ~(b & c) & ~(b & d) Conj 10, 14 -16. ~((b & c) V (b & d)) DM 15 -17. ((b & c) V (b & d)) & ~((b & c) V (b & d)) Conj 4, 16 18. ~~a IP 3-17 19. a DN 18 ~(p & q) ~(p V q) ________ _______ ~p V ~q ~p &~q (6) Premises: (x V y) & (x V z) z -> w ~(w & z) Conclusion: (x V y) & (x V z) z -> w ~(w & z) -4. ~x SA -5. x V z Simp 1 -6. z DS 5, 4 -7. w MP 2, 6 -8. ~w V ~z DM 3 -9. ~~w DN 7 -10. ~z DS 8, 9 -11. z & ~z Conj 6, 10 12.~~x IP 4-11 13. x DN 12 (8) Premises: b V (~c) (~c) -> (~a) Conclusion: (~a) V b b V (~c) (~c) -> (~a) -3. a SA -4. ~~a DN 3 -5. ~~c MT 2, 4 -6. b DS 1, 5 7. a -> b CP 3-6 8. ~a V b MI 7 (10) Premises: p <-> q Conclusion: (~p) <-> (~q) p <-> q (p -> q) & (q -> p) ME 1 p -> q Simp 2 q -> p Simp 2 -5. ~p SA -6. ~q MT 4, 5 7. ~p -> ~q CP 5-6 -8. ~q SA -9. ~p MT 4, 5 10. ~q -> ~p CP 8-9 -11. (~p -> ~q) & (~q -> ~p) Conj 7, 9 12. ~p <-> ~q ME 11 (12) Premises: p -> q r V p ~(q & r) Conclusion: p <-> q p -> q r V p ~(q & r) -4. q SA -5. ~q V~r DM 3 -6. ~~q DN 4 -7. ~r DS 5, 6 -8. p DS 2, 7 9. q -> p CP 4-8 10. (p -> q) & (q -> p) Conj 1, 9 11. p <-> q ME 10

### Do you have a lot of essay writing to do? Do you feel like you’re struggling to find the right way to go about it? If so, then you might want to consider getting help from a professional essay writer. Click one of the buttons below.

Order a Similar Paper Order a Different Paper